报告题目:Equivariant, obstructed Morse homology(等变、受阻的莫尔斯同调)
报 告 人:鲍尔考
报告摘要:本次报告中,将定义具有有限群作用的闭流形的等变莫尔斯同调。负梯度轨迹的模空间通常不是横截的,这表明了对称性和一般性之间的冲突。我们提出了两种不同的方法来解决这个问题:方法一:稳定莫尔斯函数;方法二:在半全局Kuranishi结构的思想下进行障碍束粘合。
In this talk, we define equivariant Morse homology for closed manifolds equipped with a finite group action. A significant challenge arises from the fact that the moduli spaces of trajectories of the negative gradient are usually not transversely cut out, a manifestation of the conflict between symmetry and genericity. We present two distinct approaches to tackle this issue: Approach 1: stabilizing the Morse function; Approach 2: obstruction bundle gluing in the spirit of semi-global Kuranishi structure. The talk is based on joint works with Tyler Lawson and Ke Zhu.
报告人简介:
鲍尔考 2013年博士毕业于美国威斯康星大学。目前任职于美国明尼苏达大学。主要研究方向是辛几何和切触几何。主要工作是给出了切触空间的切触同调的严格定义。研究工作发表在权威期刊Advances in Mathematics、Journal of Topology、Mathematische Zeitschrift、Journal of Geometry and Physics、Algebraic and Geometric Topology、Journal of Symplectic Geometry、Pacific Journal of Mathematics等。
报告时间:2024年06月21日13:30-15:00
报告地点:哲理楼139
联 系 人:李建涛